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ABSTRACT 

An asymptotic analysis is carried out for an approximate method of estimating 

the parameters of the power spectrum of a zero-mean stationary Gaussian random 

process from an observed realization of limited duration.   Maximum likelihood esti- 

mates are obtained with the approximation that the coefficients of the Fourier series 

expansion of the realization are uncorrelated.   This is equivalent to other approxima- 

tion techniques which assume a periodic covariance function.   The dispersion of the 

estimates is evaluated in terms of a quantity called the differential variance.   It is 

shown that with this quantity as a criterion, the approximate estimates are as good, 

asymptotically, as the exact maximum likelihood estimates.   An approximate expres- 

sion for the differential variance in terms of the power spectrum is given and it is 

shown that this expression asymptotically approaches its exact value. 

These results follow from a general expression, obtained by means of a con- 

verse to the Schwarz inequality, which compares the differential variance of the 

approximate estimates with that of the maximum likelihood estimates.   This expres- 

sion is evaluated for the power spectrum parameter estimation problem in terms of 

the covariance matrix of the Fourier coefficients.   The asymptotic behavior of these 

covariances is bounded so that the convergence of the elements of the inverse covari- 

ance matrix can be demonstrated.   The results on the differential variance of the 

approximate estimates are then established by matrix methods. 
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I.    INTRODUCTION 

This report investigates an approximate method for estimating parameters of 

the power spectrum of a zero-mean stationary Gaussian random process.   Applications 

and previous work are discussed in references 1-4.   The method is based on the ap- 

proximation that the Fourier coefficients of a realization of long-time duration are un- 

correlated.   By a result of Root and Pitcher   this is equivalent to the approximation 

that the covariance function of the process is periodic.   This latter approximation has 
6-9 

used without quantitative justification by a number of previous authors. The 

burden of the present report is to justify the approximate method by showing that, in 

a certain asymptotic sense, it provides estimates which are as good as the exact 

maximum likelihood estimates.   This is the first time, to the author's knowledge, that 

such a quantitative evaluation of the asymptotic behavior of these techniques has 

appeared.   The arguments required have turned out to be somewhat involved, but this 

is not surprising in view of the general difficulty of treating exactly problems con- 

cerning stationary non-white Gaussian processes over a finite time interval.   Only the 

estimation of a single parameter has been dealt with here, but the multi-parameter 

case can be handled at the cost of still further complexity.   The methods can also be 

applied to the estimation of the parameters of a deterministic signal in additive 

Gaussian noise and to corresponding detection problems. 

In Section II some general results on maximum likelihood estimates, the 

Cramer-Rao lower bound and the differential variance are discussed.   These are ap- 

plied to power spectrum parameter estimation in Section III.   Section IV describes 

some practical approximations to the estimates and the differential variance.   Some 

results are established in Section V for the convergence of the covariances of the 

Fourier coefficients and in Section VI for the inverse of the covariance matrix. 

Finally, Section VII proves that the differential variance of the approximate estimates 

is as small asymptotically as that of the exact maximum likelihood estimates while 

Section VIII establishes the validity of the approximation to the differential variance. 



n.   MAXIMUM LIKELIHOOD ESTIMATES AND THE DIFFERENTIAL VARIANCE 

Some general results of estimation theory,    are presented in this Section. 

Consider an N-dimensional vector random variable £with probability density f(x;a) 

depending on a parameter a with true value a .   The following discussion assumes 

that certain general regularity conditions on f(x;a) are fulfilled.   For an observation 

of £, the log likelihood of a is defined as 

A<I;a) = In f(i;a) 

The maximum likelihood (ML) estimate a is the value of a which maximizes A(£;a).   It 

can sometimes be found explicitly as the root of the likelihood equation 

£  A(?;a) =  0 (2-1) 

but usually a linearization in the vicinity of a   or a method of successive approxima- 

tions is required. 

The Cramer-Rao lower bound     states that for any estimate a* 

[ 1 + db/dao]2 

Vara*  ^   J -^ (2-2) 
E[A'(I;a0)]2 

where 

b =   Ert*-aQ 

is the bias of a*.   An alternate expression for the denominator of (2-2) is obtained 

from the identity 

ElA'djOo)]2   =  -EA^;^) (2-3) 

In this report a prime always denotes differentiation with respect to a and 



A'<W  =  äj  Mi:a) 

a = a0 

A',(i:ao) "   ^2  A(-a> 
a = OL 

An unbiased estimate whose variance satisfies (2-2) with the equals sign is 

said to be efficient.   However, efficient estimates exist only in certain cases.   ML 

estimates are not necessarily unbiased or efficient. 

Frequently the bias of an estimate under consideration cannot be established 

so the expression (2-2) is not informative.   However, the Cramer-Rao lower bound 

can still be interpreted in terms of the "sensitivity" introduced by Kelly, Lyons and 

Root.       They consider any statistic a* which is a measure of a   in the sense that its 

expectation is a monotonic function of a   and define 

sensitivity  = 

dEq" 
dap 

standard deviation of a* for a = a o 

The reciprocal of the sensitivity is just that small change in a   required to change the 

mean value of a* by one standard deviation.   It is seen that (2-2) can now be written 

1 -V 
sensitivity/ E[A'(£;a0) 

(2-4) 

Next consider the general class of estimates obtained by maximizing over a 

unction L(i 

further property 

some function L(§;a) which depends on £ and a (but not, of course, on a ) and has the 

EL,(I>%)  "  ° (2-5) 



The dispersion of the sampling errors can be characterized by a quantity which may 

be termed the differential variance. 

E[L'(?;a0)|2 

S(a*)  = 
IE L"(£;0^)12 

This quantity can be further interpreted when L(J;a) is sufficiently regular so that in 

the vicinity of the true parameter value aQ, it can be approximated by the first three 

terms of the Taylor series expansion 

(a - a0)2 

L(S; a) « L(§; oto) + (a - a,,) L'(?; a,,) + j2- L"& a0)     (2-6) 

The maximum value of L(£; a) over a occurs where 

L'(£;a) =  0 (2-7) 

so from (2-6) 

L'(?;ao) 

The distribution of the sampling error, a* - a , is approximately the same as that of 

the expression (2-8).   If it is also assumed that the random variations of LM(j*;aQ) 

are small compared with E ^"(^cr) then L,,(g.;ct0) can be approximated by its expected 

value, the random fluctuation of L'(|;a ) about zero may be thought of as a linear 

noise term displacing the peak of the parabolic approximation to L(£;a), and 

Var a* M S(a*) (2-9) 



12 
It has been shown by Godambe     that if S(a*) is taken as a measure of the 

dispersion of the estimate a*, without necessarily referring to the particular interpre- 

tation mentioned above, then under general regularity conditions S(a*) is minimized 

when L(^;a) =  A(|; a) and a* = a.   This minimum value is, by (2-3), 

,2 

S(a)  = 
- 1 E[A'(|;aQ) 

[EA"(I;a0)]2 E[A'(i;ao)]2 E Af,<?;a0) 
(2-10) 

This is the same as the quantity appearing in the Cramer-Rao lower bound (2-2), but 

the present result holds with the equals sign for any regular estimate, biased or not. 

We now determine an upper bound for S(a*) in terms of the difference between 

A(|;a)and L(§;<x).   By (2-5)* 

J" L'(x;a0)f(x;a0)dx  = 0 (2-11) 

The differentiation of (2-11) under the integral sign with respect to a  gives 

J L"(x;a0) %a0)dx = -J L'Oyc^) f(x;a0)dx 

■ -J L'<x-.cx0)   ~^J   ffeao)dx (2-12) 

13 There is a modification of the Schwarz inequality     which states that for any 
9 2 non-negative cp(z) and for integrable uz(z) cp(z) and v (z) cp(z) 

\\ u(z) v(z) cp(z) dz ]     > 1- 
J [u(z)-v(z)]2cp(z)dz 

J u2(z) cp(z) dz 

•y ry 

J u (z) cp(z) dz J v (z) cp(z) dz 

(2-13) 

*  Unless otherwise noted, all integrals are N-fold definite integrals, each component 
of x ranging over (—°°, °°). 



Let us assume the required conditions are satisfied so that (2-13) can be applied 

to the right-hand side of (2-12) giving 

. f (x; öL.) 2 

ffccfe) *-' ~o'   - 

fc < 1- 
J {L'tac^) - [ffec^VKx;^)]}2 f(x;ao) dx 

JlLf(x;a0)]2  %a0)dx 

2 « rffacxo)"!2 

; [ L'(x; a0) ]    f(x; aQ) dx J | j^       f(x; aQ) dx 
-   -   o' - 

Noting that 

ffeOp) 

f(x;ao) 
=  A'(x;a) 

a = a 

(2-14) 

and substituting (2-12) into (2-14) we can rearrange the result as 

~2 

J [ V(x; Oo) ]2  f(x; a0) dx                                                 J [ L'(x; a   - A' (x; aQ) ]2 f(x; a ) dx I"* 
    •    E[A'(£;a0)]2  ^Jl ~ 5 1 
[jL-^a^f^a^dx^ J [L'(x;ao)]     f(x;cco)dx 

(2-15) 

The left-hand side of (2-15) is just S(a*)/S(a).   The right-hand side consists of a quantity 

(1 - C)     25 1-   If £ can be shown to converge to zero, then it is established that S(a*) 

converges to its minimum value S(a).    This is a tractable criterion for establishing the 

asymptotic behavior of a general class of estimates and is applied in Section VII to the 

approximate ML power spectrum parameter estimates. 



III.    MAXIMUM LIKELIHOOD ESTIMATES FOR POWER SPECTRUM PARAMETERS 

The analysis is based on the following assumptions: 

a) The random process is stationary, Gaussian, and zero-mean with a double - 

sided power spectrum P(f;a) which is a known function of the parameter a whose value 

is to be estimated.   (If the process consists of a random signal plus an independent 

noise, then P(f;a) is the sum of the two individual spectra.) 

b) A particular realization x(t) of the process is observed for 0 ^ t ^ T. 

c) The true value of a is denoted by a   and the actual power spectrum is 

r(f) = P(f; a ).   a   is assumed to lie within a known finite interval 

a       < a  < a min      o       max 

(d) For any a within this interval, only values of P(f;a) within some fixed finite 

range 

0< fj< |f|<f2<* 

depend on a.   Since f   and f   may be anywhere outside of the range of dependence for 

convenience, we take 

fl   ■   Nl/T f2   "  N2/T 

where N   and N   are integers.    (This assumption means that P(f;a) has some constant 

shape outside of f   < |f| < f .   The assumption f   < °° allows a finite-dimensional formu- 

lation of the problem and is meaningful in the usual practical situation where frequencies 

above some finite limit are not observable.    The assumption f   > 0 is only for the con- 

venience of eliminating zero frequency which enters unsymmetrically into the formulation.) 

e)  P(f;oc) obeys certain regularity conditions which will be detailed in Section V. 

The Karhunen-Loeve expansion which is frequently employed in the analysis of 

random processes is not well adapted to   spectral   parameter estimation problems 

since it is in terms of an uncorrelated set of eigenfunctions which, except in the 



simplest cases, change in a complicated way as the parameters vary.   Instead, the 

likelihood function is here expressed in terms of the Fourier coefficients 

1      T 

Y    =  -=■   r   x(t)  exp[-i2rrnf  t] dt (3-1) n       VT    o ° 

where 

f    =   1/T 
o 

The coefficients for N   < n ^ N   are taken as the "observable coordinates"     of the 

process.   This is plausible since under general conditions, for almost every realiza- 

tion, x(t) can be represented by the limit-in-the-mean of its Fourier series expansion. 

This choice of the observable coordinates could be further justified but that will not be 

attempted here. 

The real and imaginary parts of y   each have a Gaussian distribution with zero- 

mean and the entire set of 

N   =   N2-Nx+1   =   (^-f^T+l   <   f2T (3-2) 

coefficients has an N-variate complex Gaussian distribution.   It can be shown   that 

.  2 
r nm 

= E\vm=^rJdf^)(f_yT);
f!m/T) 0-3) 

where y     is the complex conjugate of y   .    (3-3) is equivalent to a result in Reference 

5 except for a correction of a factor of two.   The boundedness of 1(f) assures that the 
rnm exist and tne normalization in (3-1) is chosen so that E|YJ   

nas a finite limit as 

With R as the matrix having elements rnm and y as the vector with elements 

Y , the log likelihood of the parameter a is 



A(Y;a)  = - {lnnN|R| + yT R"1 y} (3-4) 

which is maximized over a to determine a.   It is shown in Appendix A that R is non- 

singular if 

$(f) >  0      for all f 

Next, let p be the matrix with elements 

dnm   = £ <n*   = -^ 1 « ™*>  (f-n/THf-L/T) (3"5) 

and assume all d      exist.   Using matrix relations given by Bodewig     we have 

3T- In |R|   =   tr R"1   D (3-6) 
0(X —       — 

4~ R"1  = -R_1 D  R"1 (3-7) 
da - -     -  - 

and thus 

Af(i;a)  = ~{tr R'1  p - ^R"1 D  R"
1
  y_} (3-8) 

(In certain cases an exact expression for a can be found by using (3-8) in (2-1).)  The 

fourth product moment for complex Gaussian variates     is 

E dT ^ l) dT §l)  =  tr A R tr B R + tr A R B R (3-9) 

and therefore 

EIA'd;^)]2  =  trR"1  p   R"1  p (3-10) 

which provides the Cramer-Rao lower bound and the value of S(a). 



IV.   APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FOR POWER SPECTRUM 
PARAMETERS 

Unfortunately, the exact expression (3-4) for A(Y;*X) is too complicated to permit 

calculations in most cases.   However, it is easily seen that 

n = m 
(4-1) 

n i m 

A great simplification occurs if the approximation is made that for large T 

*<nf0> 
lim 

X -• oo 
r        = 

nm 
0 

r 
nm 

$(nfQ) n = m 
(4-2) 

0 n 4 m 

Then R becomes diagonal and we take 

N9 I     i2 

A(y;a) « L(y;a)  - - £      lnnP(nf ;a) +  p,nf      . (4-3) 
n=Nx '- 

Po'a;- 

Thus the likelihood is approximated in terms of the elements of the periodogram |Y I   • 

a* will henceforth denote the approximate ML estimates obtained by maximizing 

L(Y;*). 

If P(f;a) is a slowly varying function, then the summation (4-3) can be approxi- 

mated by an integral.   The individual |v |    need not be measured since their values can 

be smoothed and replaced in this integral by a continuous function $*(f) which is equi- 

valent to an approximately unbiased overall spectral estimate such  as given by the 

Blackman-Tukey method  ' or by a power spectrum analyzer.    For the integral to be a 

good approximation all the |Ynl   must be effectively included and the resolution must 

be sufficient so that the detailed structure of the spectrum is not obscured.   With (4-2), 
9 

|Y |    is replaced by $*(nf0) in (4-3) and 

L(v:a) « - T J   df [ log TT P(f; a) + ^J 1 (4-4) 
fl 

10 



where the integral is multiplied by T, the reciprocal of the spacing of the terms in the 

summation. 

It is now readily seen that 

H(r.a) = -SrSH-IVn'2P'(nf°:a)1 (4-5) ^ LJ I   p(nf ;a) p2/nf .„)        I 

and that 

n    -PK>:a> P2(nfo;a) 

EL'(y;ao)  =  0 (4-6) 

which satisfies (2-5).   A second differentiation and the substitution of (4-2) give 

(4-7) 
U      rD,/-Oo)^2 pi",        >        V r^T      _   2      TP^f;^ 

) 
1 

With the discussion in Appendix B and (3-2), it can readily be established that 

E L'^YJOLJ is of the order of T while the absolute value of the error in approximating 

the sum by the integral is bounded by a constant.   By some further calculations of this 

sort the approximation introduced just before (2-9) can also be justified for this case. 

We will take - E LM(v_;a ) as a convenient approximation to - E A"(y}CL0), the 

quantity entering into (2-2) and (2-10).   It should be noted that 

E[L'(v_;a0)]2   t -EL"^ 

because the y   are not, in general, uncorrelated. 

11 



V.   CONVERGENCE OF THE COVARIANCES OF THE FOURIER COEFFICIENTS 

For our purposes it is necessary to show that for some TQ > 0 and T > TQ the 

covariances rnm converge uniformly and with sufficient rapidity to their asymptotic 

values for all n,m satisfying 

Tfx =s n < Tf2 

Tf j * m < Tf2 

(5-1) 

This can be established with the assumptions on P(f;a)given in Section III plus the one 

below. 

(e) For all f and all a within a       < a< a        there exist finite constants P 
min max 

Q        , P'       , Q'       , Pmin such that max      max       max     min 

P(f;a) *  P 
max 

aP(f;o) 
M 

BP(f;a) 

=fi Q max 

* F 
max 

3f öa 
P(f;a) * Q: max 

max 

P(f;a)  *  P >  0 min 

and all indicated derivatives exist and are continuous. 

The variances r     are considered first.    From (3-3) 
nn 

2 
sin   nfT r       = 4-     r df «(f)   ^~ 

00 

= -5—  J df$(f + n/T) 

/T)2 

sin   nfT 

00 

= -j-   f df [*(n/T) + $(f + n/T) - *(n/T) ] 
T^T _«, 

sin   TTIT 
(5-2) 

L2 



Since 

1        J df   5^nfT    m   x 

n2T   _i f2 

then 

r„„-*<n/T)  =  6R„ 
2f0      -2fn 

= i|     J      +   r+n      df(*(f + n/T)-.(n/T)]  ÖSJ 
T^T   l_2f        -oo        2f, J    ( f 

7°] 
With the substitution 

U    =    TTfT 

(5-6) becomes 

r 2nTf9 .  2 
\r     I   ^     1 ^ c    *    .     sin   u 

BO 

+  2P 

00 —r 

(5-4) 

By the mean value theorem for the derivative 

|*<f + n/T)-*(n/T)|   *   |f| Qmax (5-5) 

so 

,€RiJ       37  N       dfQmax  ~M    + j     J       +   J 17 T   L-2f2 
m ^-» 2f2 

sin2TTfTl 
dfPn,.x2S^-Si> (5"6) 

maX   2f2 't.) 

13 



2nTf0 sin u f»   ^    du 
I 
2      J 

*   ijT   Kax   (iT + ln2Tral      +   ^    ] (5-7) 

which is of the order of On T)/T. 

Next, for m * n, 

nm 

CD 

5-   ]*   df$(f + n/T) 
TT2T   _ 

2 
sin   TifT 

f(f" ^) 

TT2T   -oo 
J   df   l$(f + n/T) -  *(n/T)] sinz TTfT 

f<f- =?•> 
(5-8) 

since 

J« sin2nfT 

f(f- s^) 
=    0 for m ^ n (5-9) 

Proceeding as before, we have 

nm 

r      2f9   -2fn        «O .   2    r#r.   -\   -1 

"*T   L   _2f     _.        2fJ     I f(f-  2_!i)     -1 

sin   TT 1      T2f2 
s -5-   r   dfQ 

ZI2 !I        T 

OL+P r/f2
df_L.- + fdf_j_n 

tS I maxU (f + f2)2      2f (f-f2)2/-l 

1 
n2T    I    max 

3f .. 2 2P "I r»2 sin** nfT max  j 

-3fr 

*  -TT-      2Q (TT + ln 3TfJ  + TT2-P    |_ xmax 2' 

2Pmax I 
f2      J 

(5-10) 

14 



Thus, by (5-7) and (5-10), for T larger than any specified T , we can write 

1'nm   -6nm*<n/T>l    £    KR"¥ (5-U) 

where 6       is the Kronecker delta and K„ is a finite constant which depends on T   but nm R r o 
is independent of T, a, n and m.   This rate of convergence is sufficiently rapid to 

allow proof of the final results. 

It is also necessary to establish the asymptotic behavior of 

d        =f  r nm        oa    nm 
a = «o 

00 2 
1        r    .-   0,,f      v sin   HfT 

—    J    df  P(f;a0)    (f_n/T)(f_m/T) 

First consider 

2 
sin   nfT 

Then 

dnn  =  ~Y~   J   df [P'Cn/Ti^ + P'Cf + n/Tja^-Fdi/T;^)]   ^^ 
TT    I     — oo 

=   ?'(n/T;ao)  + €Dn (5-12) 

ISn' *lk\J*  +T +J     |  ^ I^^^^V-^^VI ^f 
'2 "2 

(5-13) 

By the assumptions on P'(f;a) and the mean value theorem for the derivative, 

|P-(f + n/T;a )-P'(n/T;a)|   £   |f| Q* (5-14) 

15 



so a development analogous to that given previously shows 

~Dn' TT2T 
2Q' (TT + In 2Tf9)  + 

2p» 
max 

max 
(5-15) 

An analogous development also holds for m 4 n, so for T> T 

InT 
|d       -  6       P*(n/T;a )|   2=   K^ 1  nm        nm o" D     T 

(5-16) 

where K    is a finite constant independent of T, a, n and m. 

L6 



VI.   CONVERGENCE OF THE INVERSE OF THE COVARIANCE MATRIX OF THE 
FOURIER COEFFICIENTS 

-1 
Let \    .  (R) be the smallest eigenvalue of R and let (R)       be the (n.m) element min — ° — — nm >   »      / mm 

-1 10 
of R    .    It has been shown elsewhere     that 

nm 

-±- - (R1)    - r nn 
nn 

1 

V'     2 
r     " ( A *   )A    •  (R) nn      \*-{      in"  min- 

i=l 

(6-1) 

where ^  indicates that the term in the summation corresponding to i = n is omitted. 

In Section V it was established that for T> T 

'rJ   "   KR  — l*n (6-2) 

so with (3-2) 

N.    „ 

if 1 ta 
<   ,   K2    (InT)2 

_   f2KR         T 

By Appendix A 

(6-3) 

X    . (R)  ^  P   . mm - mm 
(A-5) 

so 

=*- -   (R-1). 
rnn-C(lnT)2/T nn 

(6-4) 

where 

f2KR 

min 
(6-5) 

17 



Thus, with (5-11), for T > T 

1 

$(n/T) + K 
R     T 

.(n/T)-KR^^^ (6-6) 

For any cp > 0 and f €= |   ^   cp/2 

<   - +   2|' 
cp cp + €        cp        ^2 

and therefore 

K 
R     In T 

§(n/T)       p2 T 
min 

<R"\n —     nn 
+ 

*<n/T)       P2 k InT  ,   c (InT) 
2-] 

min 

(6-7) 

It can also be shown that IS 

—     nm 
min  — 1=1 

(6-8) 

With (A-5), (6-2) and (6-3), it follows that 

l(R" !)nnll   *  -y-   [KR In T/T + C (In T)2/f] 

min 

Combining this with (6-7) gives for T > TQ 

|(R_1)      -  6       $(n/T)|   2=  -£- 1 -    'nm        nm ' p2 

rKRlnT        < 

(6-9) 

¥*] 
min 

<   C 
QnT)- 

R      T 
(6-10) 

18 



where C    is a Unite constant which depends upon T   but not upon T, nr., n, or m.   Thus 

as T becomes large, the off-diagonal elements of R-i  converge to zero as (In T) /T. 

19 



VII.   ASYMPTOTIC BEHAVIOR OF THE APPROXIMATE ESTIMATES 

It will now be established that 

lim    fÖ.  -    1 (7-1) 
T-oo     sfa) 

so that under the criterion of smallness of the differential variance a* is asymptotically 

as good as a.   This is accomplished by showing that 

lim     £    =    0 (7-2) 
"P -♦ CO 

where 

c = 
J   [L'(x;a) - A'(x;a)]2  f(x;a)dx 

; (L?(x;a)]2   f(x;a)dx 

c num 

Sden 

appears in (2-15). 

By (4-7) and Appendix B, £,      is of the order of T.   The development which 

follows is devoted to establishing that £ is of the order of (In T)   so that asymp- 

totically Q is of the order of (In T)VT  and therefore satisfies (7-2). 

Let ft be the diagonal matrix whose diagonal elements are ft     =   P(n/T;aQ) and 

whose off-diagonal elements are zero.   Let A have diagonal elements A     = P'(n/T;a ) 

and off-diagonal elements zero.    From (3-8), (4-5) and (3-9) 

£ =   E[tr R     D-tr ft     A   - y_    R     DR     Y+ Y    R"1 A   ft      v J 
"num 

=   [tr (R_1D - ft"1  A  )]2  -  2 [tr (R~X D  - ft"1  A  )]  [tr (R^D-ft"1 A ft_1R). 

+ [tr (R-1D - ft"1 A ft"1 R)]2  +  2 tr (R_1 D  - ft"1  A ft'1 R)2 

Con't. 
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[tr (*~l AR_1R -ft"1 A)l2   +  tr (R^D-R-1 AR"1 R)2 

v num 1        bnum 2 
(7-3) 

By (5-11) 

bnum 1 
n     Pz(n/T;a ) 

-?2 

f_ P'        KD In T 
2   max    R 

PT  
min 

n2 

(7-4) 

C        p is bounded by observing that for any square matrix A 

tr A    <   tr A A     = V     2 

nm 
nm 

(7-5) 

So if 

3 >    a 
nm nm 

for all n,m (7-6) 

then 

2 v       2 
tr A     <    V      b 

— uJ 

n,m 
nm (7-7) 

Thus we can write, by (5-11), (5-16) and (6-10), 

Cnum2   =   * [<S1 + Ei>£ + U2
)  " -1- ^"1(^ + ^3)l2 

=  tr |R V2 +H2 A +U1u2-»"1A A"2 ^ ]2 

tr [Ä
1

T]I2+TI1A
+
 +Ü2Ü2  ♦ff** ^_1  H312 (7-8) 
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where A   has elements whieh are the absolute values of those of A, all elements of r] , 

are equal to C     ——— ,   all elements of r\   are equal to K     —^r~   and all elements 
R        T 

of T)   are equal to K 
~o K 

Then 

In T 

W   *   <f2T) 
KDlnT 

P   •    T mm 

-2 

+ P*        CD max    R 
flnT)^ 

D     T 

+  C    K 
R    D 

On rf 
4 

Pf        KD In T 
max    R 

P2      T 
min 

(7-9) 

-r2 

From (7-4) and (7-9), £ 

order of T, we conclude 

(7-2) and hence the desired result. 

is of the order of (In T)   for T > T .    Since £.      is of the -num '      4 o *den 
order of T, we conclude that £ is of the order of ———  or less which establishes 

22 



VIII.    CONVERGENCE OF THE APPROXIMATION TO THE DIFFERENTIAL VARIANCE 

It has been shown (3-10) that 

S(a)  =  {tr R"1 DR"1 D]'1 (8-1) 

A convenient approximation (4-7) for S(cc) is 

i     EL   (y,aon      - I _,    P<n/T;a )       i 
n *-* 

= {tr«."1 A R1 A}"1 (8-2) 

It was shown that for T> T   this latter expression is of the order of 1/T.   It will now 

be established that as T-» <° this expression approaches S(a) and in fact 

Ihn     {"EL" fr; Op»"'       , 
'im    s<aj   - * 

T -♦ oo 

With the notation introduced in Section VII, (3-10) and (4-7) 

-1       2 tr (R      Df 

-EL"(v;ao) tr (ft"1 A)2 

tr [(ft'1+U1)(A + H2)]
2 

tr (ft"1 A)2 

(8-3) 

(8-4) 

so 

-E /r<Y;a0) 
- l 

tr (ft~    r\2 + T)x A + T)1 n2)2 

-1      2~~ 
tr (ft     A) 

(8-5) 

By the same type of argument employed in the previous Section it can be shown that the 

right hand side of (8-5) is of the order of (In T)4/T so that (8-3) is established and there- 

fore the validity of the approximation of S(a) by { -E L"(y; c^)}     is confirmed. 
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APPENDIX A.    EXTREME EIGENVALUES OF THE COVARIANCE MATRIX OF THE 
FOURIER COEFFICIENTS 

For any vector \, 

xTR x 

Now 

\       (R)  =  max      - ~- (A-l) 
max" x xTx 

N2 « 2 
T .             v 1                   m sin   TTfT 

X     R X   = XX        -r—           df $(f)     -71 /T\ u 7^\ 
" ~     n,m=N n   m   n2T — (f"n/T) (f ~m/T) 

Since the integrand of (A-2) is non-negative 

p 
T max 

x    R x  ^ r    w   fv sinnfTT 

and 

Similarly, 

TT2T      _"oo 

P ^ 2 rmax     v r    Hf sin   nfT 
n2T       ^     Xn Xm  J (f - n/T) (f - m/T) 11   l      n,m --00 

<   P V x2 (A-3) 
max   —'    n 

n 

\        (R)   <   P (A-4) 
max — max 

».m)n(R)   2   Pmin (A-5) mm— m in 

Hence, if P       > 0,   R is positive definite. 
mm -       r 
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APPENDIX B.    THE APPROXIMATION  OF SUMS BY INTEGRALS 

Assume that u(x) and are continuous (and therefore bounded) for 
dx 

-°°<a   <   x   ^  b<°°  and that 

i =; u(x) dx 

exists.    Then 

N-l 

n=0 
n (B-l) 

where 

a+(n+l)A 
I    = u(x) dx 
n J 

a+nA 

and 

NA   =   (b-a) 

By the mean value theorem for the derivative 

|u(x)-u(nA)|   <   Au' for nA   <   x   ^   (n + 1)A (B-2) 1  v " max 

where 

u =  max 
max v 

du(x) 
dx 

for a ^ x ^ b 

By the first law of the mean 

I    =  Au (Z) 
n 

(B-3) 

for some ?, such that 
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a +nA< l< n +(n + 1)A (B-4) 

Hence 

|l   -Au(nA)|   < max A |u(x) - ufnA)| 
a + nA =£ x ss a + (n + 1)A 

-    A2u* (B-5) 
max 

by (B-2).    Therefore 

N-l 
ll-A    V     u(nA)|   <   A1 u =  A(b-a)u' (B-6) 1 -U max max 

n=0 

and the diff< • ■       M the int the finite approximating sum is of the order 

of A.    On the other hand 

N-l b 
y    u(nA) -     '   u(x)ds 

n=0 a 
<   (h-a)  u' (B-7) 

max 

The right-hand side of (B-7) is a constant independent of N.    Since 

1 _N_ 
A (b-a) 

the left- ,ud side of (B-7) is of the order of N for N > NQ > 0. 
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